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Abstract— Locust are one of the most destructive 

agricultural pests in the world. The impact of climatic factors 

on locust infestation is well documented, these insights hence 

climate change is expected to radically change historic 

patterns. In fact, it is anticipated that climate change will 

increase locust habitat range by up to 25%. It is essential to 

control locust infestations early to prevent the formation of 

large-scale locust swarms. Currently, there is a gap in long-

term locust prediction using climatic data which this paper 

fills. This paper has built a pipeline harnessing data from 

locust field surveys, TerraClimate and World IUCN Habitat 

Map to prepare the model’s training and testing dataset. After 

testing multiple ML models, an Extreme Gradient Boosting 

Model was identified as the most accurate model. It has been 

optimized using the Bayesian Hyper-parameter tuning. The 

model has achieved 78% accuracy, AUC of 87.7%, AP of 89%, 

Brier score of 0.14 and a healthy distribution of predicted 

probabilities indicating its potential to collaborate with human 

experts and develop holistic locust threat maps considering the 

Socio-Economic Shared Pathways and Climate Change 

Projections from TerraClimate and Copernicus Climate 

Services. Using this model the impact of climate change on food 

supply chains and agricultural costs can be better estimated, 

supporting greater green financing from all sectors. 

Keywords—locusts, predictive modelling, climate change, 

food security, artificial intelligence, Extreme Gradient Boosting 

I. INTRODUCTION 

There are over 10,000 grasshopper species worldwide 

distributed throughout tropical, temperate grasslands and 

desert regions. Out of these species only 18-21 species are 

locusts, capable of swarming [1]. Locusts are one of the 

most destructive agricultural pests in the world and they 

threaten 10% of the global food supply [2]. A locust swarm 

consumes enough food to feed 35,000 people daily. In India, 

locust upsurges have been linked to 12% decline in national 

wheat production and resulted in an estimated US $3 billion 

worth of financial losses [3]. In the more vulnerable region 

of East Africa crop production losses due to locust 

infestations have been estimated between 42% to 69% or 

around 160,000 tons a day. To control a locust swarm toxic 

insecticide including fipronil, deltamethrin or chlorpyrifos 

are used which causes significant soil and water pollution 

reducing agricultural productivity [4]. Locust infestations 

also lead to major socio-economic repercussions like 

declining literacy, reduced household income and increased 

infant mortality [5], [6].  

 

When locusts form large swarms, they become extremely 

difficult to control due to their pesticide resistance and 

general resilience [7]. To prevent the threat of locust 

swarms, it is essential for locust management to become 

proactive. Hence, accurate detailed prediction of locust 

hotspots is key so that the locusts can be controlled pre-

swarming itself by using anti-solitarizing agents like bio-

pesticide neem oil [8], [9].      

II. LITERATURE REVIEW 

A. Locust Swarming Biology 

Locusts demonstrate population density dependent phase 

plasticity mediated by serotonin between the solitarious, 

transiens and gregarious phases [10]. Locusts normally exist 

in the solitarious phase where they avoid each other, 

however according to [11] when the population density 

increases to 75 locusts per square meter they transition into 

the gregarious phase where they are attracted to each other 

[12]. When locusts gregarize and form swarms there are 

multiple morphological and behavioral changes. For 

instance, their wingspan increases, their color changes and 

their taste mediated feedback is down regulated to include 

toxins in their diet as a defense against predators [13], [14].  

 

Climatic factors like rainfall, soil humidity, temperature and 

vegetation development  play a major role in locust breeding 

and population density patterns [15]. 

 

Excessive rains, followed by a period of drought, are 

strongly linked to the formation of gregarious locust 

swarms. Since, the excessive rains lead to high vegetative 

growth increasing the locust population and the subsequent 

drought leads to vegetative desiccation forcing the locust 

populations into regions where food is available [16]. To 

transition from a minor locust upsurge into a major locust 

plague, environmental conditions like temperature, wind and 

soil moisture must be suitable for egg laying and 

development [17].     

 

Historical analyses reveal a strong correlation between 

locust swarms and extreme weather events like hurricanes, 

unseasonal rainfall and wet-dry climates [1], [18].  Locust 

habitats are projected to rise by 5-25% by the end of the 21st 

century and become more likely to occur simultaneously in 

different regions [19]. The impact of climate change through 

cyclone Pawan and the Indian Ocean Dipole was observable 

in the 2019-21 locust plague in an unprecedented locust 

swarm invasion into multiple agricultural Indian states [20], 

[21] 
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B. Remote Sensing 

Conventionally, manual surveys were undertaken to 

measure climatic variables. However, these surveys were 

impractical for faster frequency and global coverage. Hence, 

remote sensing satellite technologies are being 

implemented. Satellite based earth observation systems 

consist of geostationary and low-Earth orbiting satellites to 

measure meteorological data at high spatial resolution [22]. 

Satellites analyze the electromagnetic radiation emitted by 

the planet to derive meteorological variables. 

 

There are multiple datasets that leverage satellites and 

derive climatic variables including TerraClimate, a dataset 

of resolution 4 km with monthly data on precipitation, wind 

speed, vapor pressure, solar radiation and temperature [23]. 

 

C. Machine Learning Models 

Machine learning is the capacity of computational 

algorithms or models to learn from data, identify patterns 

and make decisions [24]. Common models used in 

classification tasks for structured datasets including Random 

Forest Classifier, Extreme Gradient Boosting (XGBoost), 

Support Vector Machine (SVM) and Light Gradient 

Boosting Machine (LGBM). XGBoost, LGBM and Random 

Forest algorithms are based on multiple decision trees and 

the model weighs output of multiple trees in ensemble to 

develop its final decision [25].  

Research has started into developing AI based solutions to 

predict locust infestation sites. For instance [26] developed a 

Random Forest algorithm based on data from the ESA CCI 

SM v03.2. However, the model was only restricted to 

Mauritania and the SM satellite data could only measure soil 

moisture to 5cm while locusts lay their eggs at 10cm 

affecting model performance. Another effort was 

undertaken by [27] to develop LocustLens, however, this 

model had certain methodological concerns which may have 

influenced its reported accuracy score. For instance it 

created country-specific subsets for their K-NN 

classification method which could have caused a geographic 

bias and neglected multiple climatic factors. Hence scaling 

to new countries would be challenging for Locust Lens and 

the absence of climatic data may cause the model to 

underestimate the evolving impact of Climate Change. [28] 

Developed an effective forecast model with 77% success 

rate demonstrating that machine learning can be effectively 

leveraged and implemented within conventional survey 

operations. However, current modeling efforts have focused 

on short-term locust hotspot predictions, a significant 

research gap that this paper aims to fill.  

III. METHODOLOGY 

A. Data Preparation 

To train the model, data regarding locust infestations and 

corresponding climatic conditions were collected. Data 

regarding locust infestations was collected from Kaggle, 

derived from the UNFAO locust hub. This dataset contained 

data from 25.2°W to 83.3°E – spanning large parts of 

through Europe, Asia and Africa. However, preliminary 

analysis revealed that it was completely imbalanced towards 

the locust infestation class. Therefore data was requested 

from the Government of India’s Directorate of Plant 

Protection and Quarantine and Storage. The DPPQS 

provided historic locust survey data from 1985 to 2025. 

These surveys had a healthy balance of both the negative 

and positive classes. Hence further operations were 

conducted with this data. 

 

Preliminary locust data exploration revealed that maximum 

locust data was recorded in 1988, 1989, 1993, 1994, 2003, 

2004, 2005, 2019 and 2020 hence climatic data from these 

years were utilized. The data was obtained in a netCDF 

format hence they were converted into CSV formats to 

enable easy analysis. The TerraClimate data was filtered 

based on the geographical limitations on the available locust 

data to reduce compute speed. 

 

To obtain data regarding vegetation, a global map of 

terrestrial habitat types was analyzed. This map categorized 

all terrestrial areas into 47 habitat types as classified by the 

IUCN at ~100m resolution [29]. The map categorized the 

habitats at level 1 providing broad information and level 2 

which was more specific. This research paper analyzed the 

level 2 map with a sampling rate of 5000 pixel in chunks, 

and mapped the pixel color value to the map legend to 

create a dataframe labelling each region with the 

corresponding habitat class.    

 

The climatic data, the locust infestation data and habitat data 

were merged and non-integer variables like habitat type 

were one-hot encoded. All missing data was dropped, hence 

yielding a dataset of size (158317x19). During the merge 

process precision of 0.01° latitude and 0.01° longitude was 

maintained. This corresponded to a precision of 

approximately 1.11 km [30].   

B. Data Exploration and Augmentation 

To understand the importance of each climatic variable on 

locust infestation the following visualization was plotted - 

kernel density estimates (KDE), violin plots and empirical 

cumulative distribution functions. A correlational heatmap 

was also plotted and features with low difference across the 

classes were dropped.  

To filter out the outliers present in the dataset the 

Mahalanobis distances of points were calculated and plotted. 

The Mahalanobis distance is a statistical measure of the 

distance between a data point and the probability 

distribution and accounts for the correlations between 

multiple variables. Finding the presence of few big outliers 

an Isolation Forest algorithm – an unsupervised outlier 

detection method was used to filter out the outliers present. 

The habitat data appended to the dataset as string was one-

hot encoded into numerical data so that the model could 

understand it.  

C. Model Design 

Random Forest Classifier, Extreme Gradient Boosting, 

Light Gradient Boosting Machine, Support Vector Machine 

and Logistic Regression were experimented with. Each 

model was trained with the same datasets and default hyper-

parameters.  
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The effectiveness of the model was analyzed by calculating 

their precision and accuracy and plotting their confusion 

matrix and ROC curve. The features considered by each 

model were also plotted. A histogram of model confidence 

level was also generated.  

D. Model Optimisation 

The most accurate model was optimized by tuning the 

hyper-parameters: n-estimators, maximum depth of decision 

trees, learning rate, lambda regularization and alpha 

regularization. Regularization improves machine learning 

accuracy by preventing over fitting through the alpha and 

lambda variables. The lambda variable determines the 

strength of regularization while alpha determines the type of 

regularization. A randomized search was first conducted to 

provide a rough estimate of the ideal parameters, next a grid 

search and a Bayesian search were conducted to find the 

best hyper-parameters.  

E. Generating Future Locust Threat Maps 

Data from TerraClimate was used for their simulated 

conditions of 2015+2°C condition. The netCDF4 files were 

converted into excels and merged together into a single 

dataframe. This dataset was filtered within the Indian sub-

continent to the latitudinal extent of 7°N to 38°N and 

longitudinal extent of 67°E to 98°E. 

 

This data was then refined by dropping NaN values and 

integrating habitat data. This data was then fed into the 

model for predictions with probabilities. Predictions of 

locust infestation absences were negated, so that the low 

confidence negative classifications were also adequately 

communicated.  

IV. RESULTS & DISCUSSION 

A. Exploring the Dataset 

The dataset is geographically spread across Northwest India 

which is most affected by locust swarms. It has 158,317 data 

points. It naturally has a positive class balance with a 52:48 

split. Hence oversampling techniques like SMOTE were not 

necessary. 

 
 

 

While checking for outliers inconsequential variables like 

Year, latitude and longitude were excluded. All datapoints 

with Mahalonobis Distance greater than 99% were 

considered to be outliers. These were filtered out using the 

Isolation Forest Algorithm. 

 
 

 

 

 

To better understand the climatic data present and how it 

related to locust infestations, violin plots and kernel density 

plots were made. On analyzing the plots it was revealed that 

largely across both categories – the climatic variables had 

the same range, however, there were density differences in 

values.  

To better understand the variables having the maximum 

impact on the locust infestation a correlation heat-map was 

plotted. Some significant correlations were observed that 

shifted according to the presence of locust infestation. These 

variables were identified to be important for determining 

locust presence. These variables included the Palmer 

Drought Severity Index, Soil Moisture, minimum and 

maximum temperature, evapotranspiration rate and Climate 

Water Deficit. This aligns with literature which suggests 

that ambient moisture, drought stress and temperature 

conditions have a significant effect on locust breeding, 

migration and gregarization citation. 

 

 

 

B. Model Performance 

XGBoost, LightGBM, Support Vector Machines and 

Random Forest Models were tested with the dataset. It was 

found that XGBoost and Random Forest showed 

comparable results for the metric of accuracy and 

 
 

 

Fig. 1 Geographic Spread of Datapoints in Dataset 

Fig. 2 Outliers in the Dataset 

Fig. 3 Correlation Heat Map 

ISHAAN SURVE



IEEE Innovate for Humanitarian: Tech Solutions for Global Challenge (ICIH 2025) 

 

1. 979-8-3315-5644-0/25/$31.00 ©2025 IEEE 

2. DOI : 10.1109/ICIH67754.2025. 

outperformed the other models. Since XGBoost had a 

significantly faster compute time and lower memory 

overhead it was pragmatically selected as the model to be 

optimized. 

 

  
 

 

 

 

The best hyper-parameters for XGBoost was found to be a 

learning rate of 0.0667, max depth of trees at 8 and 453 n-

estimators. The optimized model achieved equal precision, 

recall and F1 scores at 78%. The model had a higher 

precision for detecting locust outbreaks at 80% and a high 

average precision of 89% highlighting its ability to correctly 

identify locust infestation sites.  It also had a higher area 

under the curve of 87.7%, indicating good discriminative 

power between the two classes.  

 

 
 

 

 

 

It achieved a low Brier Score of 0.14 which is the mean 

squared error between the actual class and the predicted 

probability, indicating accurate probabilistic determinations 

 

The model generated a broad range of probabilities for its 

prediction indicating that the model can be effectively 

harnessed as a collaborative tool as it is communicative to 

scientists to the level of its own confidence. 

 

The feature importance obtained from the model support 

literature review since variables like vapor density, soil 

moisture, Palmer Drought Severity Index are highly 

weighted.  

 

 
 

 

 

C. Future Threat to India 

The model pipeline worked successfully as the threat levels 

of locust swarm were communicated visually through maps.  

The impacts of climate change are being simulated under 

multiple possible shared socio-economic pathways. The 

most optimistic climate pathways is SSP1 which assumes a 

gradual sustainable transition [31]. However, some 

researchers including [32] consider the SSP as too optimistic 

given trends towards conflicts and the enduring resilience of 

the fossil fuel sector. Estimates suggest that the SSP 2-4.5 

are most realistic, these models project warming by 2.5°C to 

3°C by 2100. 

To validate the capacity of the predictive pipeline climatic 

data simulating the year 2015 under a +2°C future which 

under SSP2-4.5 is likely to be breached in the mid-2050s is 

tested.  

India traditionally is not an active locust hotspot region, as it 

largely lies in the recession zone with only sporadic locust 

activity once every 8 years due to external locust migration 

[33]. However, in these predictions the Thar Desert Region, 

in Rajasthan, has become a major hotspot for locust 

infestations. The model also predicts more states in India to 

becoming suitable for locusts infestations including Punjab, 

Haryana, Madhya Pradesh Maharashtra and Gujarat. These 

predictions are supported by empirical observations as 

during the 2019-2021 locust plague, these states were also 

affected [34]. Additional vulnerabilities are highlighted in 

South and Eastern India in the states of Odisha, West 

Bengal, Tamil Nadu and Andhra Pradesh. This may be due 

to the fact that climate change is anticipated to increase the 

scale and frequency of tropical cyclones in these regions 

[14]. Literature has suggested that tropical cyclones promote 

favorable conditions by increasing air moisture and 

temperatures [35]. The expansion of locust infestations in 

India aligns with literature.  

 

 

 

 

Fig. 4 XGBoost Confusion Matrix 

Fig. 5 ROC of XGBoost – much better than random predictions 

Fig. 6 Features most important to the Model 
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Fig. 7 Comparative Threat Assessment of India in the 

present and in the 2050s considering a +2oC climate 

pathway 

V. CONCLUSION 

This model is geographically restricted to the Indian sub-

continent – similar models can be developed for other 

geographical regions including MENA and Latin America 

recognizing the biological differences in these regions due 

to which locust infestations are correlated with different 

climatic relationships. The pipeline described in this paper 

can be scaled globally, as the UNFAO and national 

governments affected by locusts collect these datapoints.  

While developing the model there were constraints on 

compute resources and data. Hence the accuracy currently 

achieved by the model – 78% is a baseline which will keep 

improving with the addition of more data. Most affected 

governments conduct regular surveys which yield both 

negative and positive results hence a government can 

leverage the pipeline developed in this paper to continuously 

add data to the model improving its performance for their 

specific geographic context.  

The future projections data can also be leveraged from 

different sources. For instance, the Copernicus Climate 

Change Service which provides climatic data based off the 

SSPs till 2100 through the globally standardized Coupled 

Model Intercomparison Project. Hence governments can 

realistically evaluate the impacts of climate change on the 

critical agricultural sector.  

This model can shape up national pest mitigation policies. 

With long-term warnings governments can take preventive 

steps through biological or mechanical means to prevent 

swarm formation rather than resorting to chemical 

pesticides. An edge device can also be developed to collect 

soil moisture and other environmental data while locust 

surveys are being collected. Governments can leverage 

existing communication channels like SMS to disseminate 

the model’s insights among stakeholders like farmers and 

environmentalists.  
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