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Abstract— Locust are one of the most destructive
agricultural pests in the world. The impact of climatic factors
on locust infestation is well documented, these insights hence
climate change is expected to radically change historic
patterns. In fact, it is anticipated that climate change will
increase locust habitat range by up to 25%. It is essential to
control locust infestations early to prevent the formation of
large-scale locust swarms. Currently, there is a gap in long-
term locust prediction using climatic data which this paper
fills. This paper has built a pipeline harnessing data from
locust field surveys, TerraClimate and World IUCN Habitat
Map to prepare the model’s training and testing dataset. After
testing multiple ML models, an Extreme Gradient Boosting
Model was identified as the most accurate model. It has been
optimized using the Bayesian Hyper-parameter tuning. The
model has achieved 78% accuracy, AUC of 87.7%, AP of 89%,
Brier score of 0.14 and a healthy distribution of predicted
probabilities indicating its potential to collaborate with human
experts and develop holistic locust threat maps considering the
Socio-Economic Shared Pathways and Climate Change
Projections from TerraClimate and Copernicus Climate
Services. Using this model the impact of climate change on food
supply chains and agricultural costs can be better estimated,
supporting greater green financing from all sectors.

Keywords—Ilocusts, predictive modelling, climate change,
food security, artificial intelligence, Extreme Gradient Boosting

I. INTRODUCTION

There are over 10,000 grasshopper species worldwide
distributed throughout tropical, temperate grasslands and
desert regions. Out of these species only 18-21 species are
locusts, capable of swarming [1]. Locusts are one of the
most destructive agricultural pests in the world and they
threaten 10% of the global food supply [2]. A locust swarm
consumes enough food to feed 35,000 people daily. In India,
locust upsurges have been linked to 12% decline in national
wheat production and resulted in an estimated US $3 billion
worth of financial losses [3]. In the more vulnerable region
of East Africa crop production losses due to locust
infestations have been estimated between 42% to 69% or
around 160,000 tons a day. To control a locust swarm toxic
insecticide including fipronil, deltamethrin or chlorpyrifos
are used which causes significant soil and water pollution
reducing agricultural productivity [4]. Locust infestations
also lead to major socio-economic repercussions like
declining literacy, reduced household income and increased
infant mortality [5], [6].

When locusts form large swarms, they become extremely
difficult to control due to their pesticide resistance and
general resilience [7]. To prevent the threat of locust
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swarms, it is essential for locust management to become
proactive. Hence, accurate detailed prediction of locust
hotspots is key so that the locusts can be controlled pre-
swarming itself by using anti-solitarizing agents like bio-
pesticide neem oil [8], [9].

II. LITERATURE REVIEW

A. Locust Swarming Biology

Locusts demonstrate population density dependent phase
plasticity mediated by serotonin between the solitarious,
transiens and gregarious phases [10]. Locusts normally exist
in the solitarious phase where they avoid each other,
however according to [11] when the population density
increases to 75 locusts per square meter they transition into
the gregarious phase where they are attracted to each other
[12]. When locusts gregarize and form swarms there are
multiple morphological and behavioral changes. For
instance, their wingspan increases, their color changes and
their taste mediated feedback is down regulated to include
toxins in their diet as a defense against predators [13], [14].

Climatic factors like rainfall, soil humidity, temperature and
vegetation development play a major role in locust breeding
and population density patterns [15].

Excessive rains, followed by a period of drought, are
strongly linked to the formation of gregarious locust
swarms. Since, the excessive rains lead to high vegetative
growth increasing the locust population and the subsequent
drought leads to vegetative desiccation forcing the locust
populations into regions where food is available [16]. To
transition from a minor locust upsurge into a major locust
plague, environmental conditions like temperature, wind and
soil moisture must be suitable for egg laying and
development [17].

Historical analyses reveal a strong correlation between
locust swarms and extreme weather events like hurricanes,
unseasonal rainfall and wet-dry climates [1], [18]. Locust
habitats are projected to rise by 5-25% by the end of the 21%
century and become more likely to occur simultaneously in
different regions [19]. The impact of climate change through
cyclone Pawan and the Indian Ocean Dipole was observable
in the 2019-21 locust plague in an unprecedented locust
swarm invasion into multiple agricultural Indian states [20],
[21]
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B. Remote Sensing

Conventionally, manual surveys were undertaken to
measure climatic variables. However, these surveys were
impractical for faster frequency and global coverage. Hence,
remote sensing satellite technologies are being
implemented. Satellite based earth observation systems
consist of geostationary and low-Earth orbiting satellites to
measure meteorological data at high spatial resolution [22].
Satellites analyze the electromagnetic radiation emitted by
the planet to derive meteorological variables.

There are multiple datasets that leverage satellites and
derive climatic variables including TerraClimate, a dataset
of resolution 4 km with monthly data on precipitation, wind
speed, vapor pressure, solar radiation and temperature [23].

C. Machine Learning Models

Machine learning is the capacity of computational
algorithms or models to learn from data, identify patterns
and make decisions [24]. Common models used in
classification tasks for structured datasets including Random
Forest Classifier, Extreme Gradient Boosting (XGBoost),
Support Vector Machine (SVM) and Light Gradient
Boosting Machine (LGBM). XGBoost, LGBM and Random
Forest algorithms are based on multiple decision trees and
the model weighs output of multiple trees in ensemble to
develop its final decision [25].

Research has started into developing Al based solutions to
predict locust infestation sites. For instance [26] developed a
Random Forest algorithm based on data from the ESA CCI
SM v03.2. However, the model was only restricted to
Mauritania and the SM satellite data could only measure soil
moisture to Scm while locusts lay their eggs at 10cm
affecting model performance. Another effort was
undertaken by [27] to develop LocustLens, however, this
model had certain methodological concerns which may have
influenced its reported accuracy score. For instance it
created country-specific  subsets for their K-NN
classification method which could have caused a geographic
bias and neglected multiple climatic factors. Hence scaling
to new countries would be challenging for Locust Lens and
the absence of climatic data may cause the model to
underestimate the evolving impact of Climate Change. [28]
Developed an effective forecast model with 77% success
rate demonstrating that machine learning can be effectively
leveraged and implemented within conventional survey
operations. However, current modeling efforts have focused
on short-term locust hotspot predictions, a significant
research gap that this paper aims to fill.

[II. METHODOLOGY

A. Data Preparation

To train the model, data regarding locust infestations and
corresponding climatic conditions were collected. Data
regarding locust infestations was collected from Kaggle,
derived from the UNFAO locust hub. This dataset contained
data from 25.2°W to 83.3°E — spanning large parts of
through Europe, Asia and Africa. However, preliminary
analysis revealed that it was completely imbalanced towards
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the locust infestation class. Therefore data was requested
from the Government of India’s Directorate of Plant
Protection and Quarantine and Storage. The DPPQS
provided historic locust survey data from 1985 to 2025.
These surveys had a healthy balance of both the negative
and positive classes. Hence further operations were
conducted with this data.

Preliminary locust data exploration revealed that maximum
locust data was recorded in 1988, 1989, 1993, 1994, 2003,
2004, 2005, 2019 and 2020 hence climatic data from these
years were utilized. The data was obtained in a netCDF
format hence they were converted into CSV formats to
enable easy analysis. The TerraClimate data was filtered
based on the geographical limitations on the available locust
data to reduce compute speed.

To obtain data regarding vegetation, a global map of
terrestrial habitat types was analyzed. This map categorized
all terrestrial areas into 47 habitat types as classified by the
IUCN at ~100m resolution [29]. The map categorized the
habitats at level 1 providing broad information and level 2
which was more specific. This research paper analyzed the
level 2 map with a sampling rate of 5000 pixel in chunks,
and mapped the pixel color value to the map legend to
create a dataframe labelling each region with the
corresponding habitat class.

The climatic data, the locust infestation data and habitat data
were merged and non-integer variables like habitat type
were one-hot encoded. All missing data was dropped, hence
yielding a dataset of size (158317x19). During the merge
process precision of 0.01° latitude and 0.01° longitude was
maintained. This corresponded to a precision of
approximately 1.11 km [30].

B. Data Exploration and Augmentation

To understand the importance of each climatic variable on
locust infestation the following visualization was plotted -
kernel density estimates (KDE), violin plots and empirical
cumulative distribution functions. A correlational heatmap
was also plotted and features with low difference across the
classes were dropped.

To filter out the outliers present in the dataset the
Mahalanobis distances of points were calculated and plotted.
The Mahalanobis distance is a statistical measure of the
distance between a data point and the probability
distribution and accounts for the correlations between
multiple variables. Finding the presence of few big outliers
an Isolation Forest algorithm — an unsupervised outlier
detection method was used to filter out the outliers present.
The habitat data appended to the dataset as string was one-
hot encoded into numerical data so that the model could
understand it.

C. Model Design

Random Forest Classifier, Extreme Gradient Boosting,
Light Gradient Boosting Machine, Support Vector Machine
and Logistic Regression were experimented with. Each
model was trained with the same datasets and default hyper-
parameters.
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The effectiveness of the model was analyzed by calculating
their precision and accuracy and plotting their confusion
matrix and ROC curve. The features considered by each
model were also plotted. A histogram of model confidence
level was also generated.

D. Model Optimisation

The most accurate model was optimized by tuning the
hyper-parameters: n-estimators, maximum depth of decision
trees, learning rate, lambda regularization and alpha
regularization. Regularization improves machine learning
accuracy by preventing over fitting through the alpha and
lambda variables. The lambda variable determines the
strength of regularization while alpha determines the type of
regularization. A randomized search was first conducted to
provide a rough estimate of the ideal parameters, next a grid
search and a Bayesian search were conducted to find the
best hyper-parameters.

E. Generating Future Locust Threat Maps

Data from TerraClimate was used for their simulated
conditions of 2015+2°C condition. The netCDF4 files were
converted into excels and merged together into a single
dataframe. This dataset was filtered within the Indian sub-
continent to the latitudinal extent of 7°N to 38°N and
longitudinal extent of 67°E to 98°E.

This data was then refined by dropping NaN values and
integrating habitat data. This data was then fed into the
model for predictions with probabilities. Predictions of
locust infestation absences were negated, so that the low
confidence negative classifications were also adequately
communicated.

IV. RESULTS & DISCUSSION

A. Exploring the Dataset

The dataset is geographically spread across Northwest India
which is most affected by locust swarms. It has 158,317 data
points. It naturally has a positive class balance with a 52:48
split. Hence oversampling techniques like SMOTE were not
necessary.
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While checking for outliers inconsequential variables like
Year, latitude and longitude were excluded. All datapoints
with Mahalonobis Distance greater than 99% were
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considered to be outliers. These were filtered out using the
Isolation Forest Algorithm.
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Fig. 2 Outliers in the Dataset

To better understand the climatic data present and how it
related to locust infestations, violin plots and kernel density
plots were made. On analyzing the plots it was revealed that
largely across both categories — the climatic variables had
the same range, however, there were density differences in
values.

To better understand the variables having the maximum
impact on the locust infestation a correlation heat-map was
plotted. Some significant correlations were observed that
shifted according to the presence of locust infestation. These
variables were identified to be important for determining
locust presence. These variables included the Palmer
Drought Severity Index, Soil Moisture, minimum and
maximum temperature, evapotranspiration rate and Climate
Water Deficit. This aligns with literature which suggests
that ambient moisture, drought stress and temperature
conditions have a significant effect on locust breeding,
migration and gregarization citation.
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Fig. 3 Correlation Heat Map

B. Model Performance

XGBoost, LightGBM, Support Vector Machines and
Random Forest Models were tested with the dataset. It was
found that XGBoost and Random Forest showed

comparable results for the metric of accuracy and
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outperformed the other models. Since XGBoost had a
significantly faster compute time and lower memory
overhead it was pragmatically selected as the model to be
optimized.
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Fig. 4 XGBoost Confusion Matrix

The best hyper-parameters for XGBoost was found to be a
learning rate of 0.0667, max depth of trees at 8 and 453 n-
estimators. The optimized model achieved equal precision,
recall and F1 scores at 78%. The model had a higher
precision for detecting locust outbreaks at 80% and a high
average precision of 89% highlighting its ability to correctly
identify locust infestation sites. It also had a higher area
under the curve of 87.7%, indicating good discriminative
power between the two classes.

Recsiver Operating Characteristic (ROC)
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—— ROC curve (AUC = 0.877)
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Fig. 5 ROC of XGBoost — much better than random predictions

It achieved a low Brier Score of 0.14 which is the mean
squared error between the actual class and the predicted
probability, indicating accurate probabilistic determinations

The model generated a broad range of probabilities for its
prediction indicating that the model can be effectively
harnessed as a collaborative tool as it is communicative to
scientists to the level of its own confidence.

The feature importance obtained from the model support
literature review since variables like vapor density, soil
moisture, Palmer Drought Severity Index are highly
weighted.
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Fig. 6 Features most important to the Model

C. Future Threat to India

The model pipeline worked successfully as the threat levels
of locust swarm were communicated visually through maps.

The impacts of climate change are being simulated under
multiple possible shared socio-economic pathways. The
most optimistic climate pathways is SSP1 which assumes a
gradual sustainable transition [31]. However, some
researchers including [32] consider the SSP as too optimistic
given trends towards conflicts and the enduring resilience of
the fossil fuel sector. Estimates suggest that the SSP 2-4.5
are most realistic, these models project warming by 2.5°C to
3°C by 2100.

To validate the capacity of the predictive pipeline climatic
data simulating the year 2015 under a +2°C future which
under SSP2-4.5 is likely to be breached in the mid-2050s is
tested.

India traditionally is not an active locust hotspot region, as it
largely lies in the recession zone with only sporadic locust
activity once every 8 years due to external locust migration
[33]. However, in these predictions the Thar Desert Region,
in Rajasthan, has become a major hotspot for locust
infestations. The model also predicts more states in India to
becoming suitable for locusts infestations including Punjab,
Haryana, Madhya Pradesh Maharashtra and Gujarat. These
predictions are supported by empirical observations as
during the 2019-2021 locust plague, these states were also
affected [34]. Additional vulnerabilities are highlighted in
South and Eastern India in the states of Odisha, West
Bengal, Tamil Nadu and Andhra Pradesh. This may be due
to the fact that climate change is anticipated to increase the
scale and frequency of tropical cyclones in these regions
[14]. Literature has suggested that tropical cyclones promote
favorable conditions by increasing air moisture and
temperatures [35]. The expansion of locust infestations in
India aligns with literature.
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2020 Locust Predictions

2050 Locust Threat Map

Fig. 7 Comparative Threat Assessment of India in the
present and in the 2050s considering a +2°C climate
pathway

V. CONCLUSION

This model is geographically restricted to the Indian sub-
continent — similar models can be developed for other
geographical regions including MENA and Latin America
recognizing the biological differences in these regions due
to which locust infestations are correlated with different
climatic relationships. The pipeline described in this paper
can be scaled globally, as the UNFAO and national
governments affected by locusts collect these datapoints.
While developing the model there were constraints on
compute resources and data. Hence the accuracy currently
achieved by the model — 78% is a baseline which will keep
improving with the addition of more data. Most affected
governments conduct regular surveys which yield both
negative and positive results hence a government can
leverage the pipeline developed in this paper to continuously
add data to the model improving its performance for their
specific geographic context.

The future projections data can also be leveraged from
different sources. For instance, the Copernicus Climate
Change Service which provides climatic data based off the
SSPs till 2100 through the globally standardized Coupled
Model Intercomparison Project. Hence governments can
realistically evaluate the impacts of climate change on the
critical agricultural sector.

This model can shape up national pest mitigation policies.
With long-term warnings governments can take preventive
steps through biological or mechanical means to prevent
swarm formation rather than resorting to chemical
pesticides. An edge device can also be developed to collect
soil moisture and other environmental data while locust
surveys are being collected. Governments can leverage
existing communication channels like SMS to disseminate
the model’s insights among stakeholders like farmers and
environmentalists.
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